Russian palatalization: the true(r) story

Pavel Iosad pavel.iosad@uit.no Bruce Morén-Duolljá bruce.moren@uit.no

Universitetet i Tromsø/CASTL

Old World Conference in Phonology 7 Universitat de Nissa 29 de genièr 2010

Surface inventory

- Surface inventory
- Redux on traditions within the generative approach

- Surface inventory
- Redux on traditions within the generative approach
- Serious Evidence against following assumptions:

- Surface inventory
- Redux on traditions within the generative approach
- Serious Evidence against following assumptions:
 - Six contrastive vowels

- Surface inventory
- Redux on traditions within the generative approach
- Serious Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive

- Surface inventory
- Redux on traditions within the generative approach
- Seriod Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels

- Surface inventory
- Redux on traditions within the generative approach
- Seriod Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach

- Surface inventory
- Redux on traditions within the generative approach
- Seriod Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)

- Surface inventory
- Redux on traditions within the generative approach
- Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)
 - Morpheme-edge palatalization is autosegmental

- Surface inventory
- Redux on traditions within the generative approach
- Seriod Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)
 - Morpheme-edge palatalization is autosegmental
 - PSM and standard OT provide an adequate account

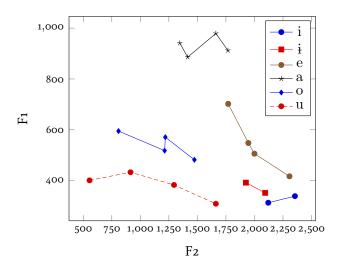
- Surface inventory
- Redux on traditions within the generative approach
- Seriod Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)
 - Morpheme-edge palatalization is autosegmental
 - PSM and standard OT provide an adequate account
- Serious Evidence for substance-free phonology

- Surface inventory
- Redux on traditions within the generative approach
- Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)
 - Morpheme-edge palatalization is autosegmental
 - PSM and standard OT provide an adequate account
- Serious Evidence for substance-free phonology
- Evidence against multiple-level derivations

- Surface inventory
- Redux on traditions within the generative approach
- Evidence against following assumptions:
 - Six contrastive vowels
 - Palatalized velars are noncontrastive
 - Morpheme-edge palatalization derives from the quality of surface vowels
- Present our approach
 - Palatalization normally does not spread V→C (with one exception)
 - Morpheme-edge palatalization is autosegmental
 - PSM and standard OT provide an adequate account
- Serious Evidence for substance-free phonology
- Evidence against multiple-level derivations
- Some implications

Outline

- Data
 - Inventories
 - Distributions
 - Palatalization and depalatalization
- Approaches and problems
 - Generative approaches
 - Challenging the assumptions
- The proposal
 - Assumptions
 - Analysis
 - Further issues


Consonant inventory

Manner	La	bial	D	ental	Post	alveolar	Palatal	Do	rsal
Plain stop	р	b	t	d				k	g
Palatalized stop	p^{j}	b^{j}	${ m t}^{ m j}$	d^{j}				k^{j}	g^{j}
Plain fricative	f	[v]	\mathbf{s}	\mathbf{z}	$\mathfrak{s}^{\mathbf{w}}$	$\mathbf{z}_{\!\scriptscriptstyle \mathbf{v}}^{\mathbf{w}}$	[j]	\mathbf{x}	
Palatalized fricative	$\mathbf{f}^{\mathbf{j}}$	$[v^j]$	$\mathbf{s}^{\mathbf{j}}$	$\mathbf{z}^{\mathbf{j}}$	∫jː	(ʒ ^j ː)		$\mathbf{x}^{\mathbf{j}}$	
Plain affricate			$\widehat{\mathrm{ts}}$						
Palatalized affricate				$\widehat{\mathrm{t}}\widehat{\mathrm{J}}^{\mathrm{j}}$					
Plain nasal	\mathbf{m}		n	Ü					
Palatalized nasal	m^{j}		n^{j}						
Plain lateral				ł					
Palatalized lateral				lj					
Plain trill/flap				r/r					
Palatalized trill/flap				r^{j}/r^{j}					
Approximant		[v]					[j]		
Palatalized approximant		$[v^j]$							

Consonant inventory

Manner	La	bial	D	ental	Post	alveolar	Palatal	Do	rsal
Plain stop	р	b	t	d				k	g
Palatalized stop	p^{j}	$\mathbf{b}^{\mathbf{j}}$	$\mathbf{t}^{\mathbf{j}}$	d^{j}				k^{j}	g^{j}
Plain fricative	f	[v]	\mathbf{s}	\mathbf{z}	$\mathbf{s}^{\mathbf{w}}$	$\mathbf{z}_{\!\scriptscriptstyle \mathbf{v}}^{\mathbf{w}}$	[j]	\mathbf{x}	
Palatalized fricative	f^j	$[v^j]$	$\mathbf{s}^{\mathbf{j}}$	$\mathbf{z}^{\mathbf{j}}$	∫j≀	$(3^{j}:)$		$\mathbf{x}^{\mathbf{j}}$	
Plain affricate			$\widehat{ ext{ts}}$						
Palatalized affricate				$\widehat{\mathrm{t} \! \int^j}$					
Plain nasal	\mathbf{m}		\mathbf{n}						
Palatalized nasal	m^{j}		n^{j}						
Plain lateral				ł					
Palatalized lateral				lj					
Plain trill/flap				r/r					
Palatalized trill/flap				r^{j}/r^{j}					
Approximant		[v]					[j]		
Palatalized approximant		[v ^j]					203		

Vowel inventory: stressed syllables

Vowel inventory: stressed syllables

- Five or six vowels
- Strong coarticulation effects with palatalized consonants
- [i] and [i] in complementary distribution:
 - [i] following palatalized consonants and syllable-initially
 - [i] following non-palatalized consonants (and some extremely marginal syllable-initial examples)
- Otherwise syllable-initial vowels are realized as if preceded by a non-palatalized consonant

Distribution of palatalization: non-dorsals

- Labials and coronals contrast for palatalization across all positions
- Before non-front vowels:

```
(1) a. ['mat] 'small'
b. ['mjat] 'crumbled, kneaded (pa. t.)'
```

- (2) a. ['tok] 'flow (n.)' b. ['t^jok] 'flowed (pa. t.)'
- Before front vowels
 - (3) Before [i]/[i]: what is the underlying contrast?

```
a. ['pɨł] 'eagerness'
b. ['pʲit] '(he) drank'
```

- (4) Before /e/: [CE] are borrowings, albeit well-nativized
 - $\begin{array}{lll} a. & \left[\begin{array}{cc} t \\ \end{array} \right] & \text{`test (gen. sg.)'} \\ b. & \left[\begin{array}{cc} t \\ \end{array} \right] & \text{`dough'} \\ \end{array}$

Distribution of palatalization: non-dorsals

• Word-finally there is a contrast for both labials and coronals:

(5)	[ˈm ^j eł] [ˈm ^j el ^j]	ʻchalk' ʻshoal'
(.)	Г с	(, 1 .)

(6) a. [praf] 'right' b. [praf^j] 'rule!'

• So far it all seems unremarkable...

Distribution of palatalization: dorsals

- Not with dorsals, though
- No contrast word-finally:
 - (7) a. [mak] 'poppy' b. $*[\text{mak}^j]$ '???'
- Palatalized velars before non-front vowels: almost exclusively borrowings
 - (8) a. $['g^jujs]$ 'naval jack' b. $[pən^jr'k^jor]$ 'panic-monger'
- Plus (in Standard Russian) one verb with a morphologically conditioned $[k] \sim [k^j]$ alternation (Flier, 1982):
 - $\begin{array}{cccc} \text{(9)} & \text{ a. } & [tkat^j] & \text{ `to weave'} \\ & \text{ b. } & [tk^jot] & \text{ `(s)he weaves'} \end{array}$
- More in dialects

CASTL

Distribution of palatalization: dorsals

- Velars before front vowels
- If the vowel is /e/, velars are not palatalized only in a very few borrowings
- For [i]/[i]:
 - Normally, velars are palatalized

Only extremely few borrowings (mostly from Turkic) with [ki gi xi], normally have variants with [kj gj xji]

$$\begin{array}{cccc} \text{(11)} & \text{ a. } & \left[\begin{array}{ccc} \text{kir'gis} \end{array} \right] & \text{`Kyrgyz'} \\ & \text{ b. } & \left[\begin{array}{ccc} \text{k'ir'g'is} \end{array} \right] & \text{`id', more frequent} \end{array}$$

Distribution of palatalization: dorsals

 Complication for [i]/[i]: [ki gi xi] are allowed across word boundaries, cf.

- Overall, these facts are normally used to support the claim that palatalization on dorsals is always derived
- How does this square with the unremarkable status of palatalization on non-dorsals?

Palatalizaton types

- At morpheme edges, we encounter various palatalization-related phenomena
- We concentrate on four types:
 - Surface palatalization
 - Retraction
 - Velar palatalization
 - Transitive palatalization

Surface palatalization

 Non-dorsals turn into their palatalized correspondents, normally before suffixes starting with [i] and [e]

(13) a.
$$['xvost]$$
 'tail'
b. $['xvos^jt^j$ ık] 'small tail'
(14) a. $[mes'kva]$ 'Moscow'
b. $[v mes'kv^je]$ 'in Moscow'

• We come back to dorsals later

Retraction

 Across prefix-stem and preposition-word boundaries (at least), stem- resp. word-initial [i] is realized as [i] and does not palatalize a preceding non-palatalized consonant

• Uncanny similarity to the [kɨ gɨ xɨ] context

Velar palatalization

- $/k g x/ \rightarrow /\widehat{tf^j} z^w_i s^w/$
- Mostly before suffixes starting with /i/ or /i/ and /e/ or /o/
- Long story on the $/e/ \rightarrow /o/$ shift omitted here
 - (17) a. ['mox] 'moss'
 - b. [ˈms̞wistij] 'mossy'
 - (18) a. [se'bake] 'dog' b. [səbe'tfjonke] 'small dog'

Russian palatalization: the true(r) story

Transitive palatalization

- $\bullet \ /t \ d \ s \ z/ \to /\widehat{t J^j} \ z^w \ \varsigma^w \ z^w /$
- "Many disparate changes"; "extremely opaque process" (Rubach, 2000)
- Caused by all sorts of miscellaneous suffixes (which historically contain a lost *j)
 - (19) a. [gərɐˈda] 'cities' b. [gərɐˈẓwan^jm] 'city-dweller'
- Rubach (2000): "best treated as instances of allomorphy", and cf. A S Rubach & Booij (2001) for Polish

Outline

- Data
 - Inventories
 - Distributions
 - Palatalization and depalatalization
- Approaches and problems
 - Generative approaches
 - Challenging the assumptions
- The proposal
 - Assumptions
 - Analysis
 - Further issues

The historical legacy

- Halle (1959) is of course the original generative treatment of Russian
- Just like Chomsky & Halle (1968) (or is it the other way around?),
 relies rather heavily on restating history through rules
- Russian generative phonology a sprouting industry: Lightner (1972) is just one example
- Should we expect newer literature to ditch those assumptions and turn to the surface?
- Hasn't happened. In fact, what we may call the Iowa-Warsaw school (Rubach, 2000, 2007; Plapp, 1999; Mołczanow, 2007)

 argues rather forcefully that Russian is a prime example against parallel OT

The big question

- How do we treat lexical and morphological palatalization?
- Is it just front vowels spreading [-back] to consonants?
- Especially available in a theory which has all sorts of absolute neutralization (Halle, 1959; Lightner, 1972)
- "Vowel power" versus "consonant power" (Hamilton, 1976)
- This has essentially boiled down to the [i]/[i] question
- Plapp (1999): the two-vowel account is superior to the one-vowel account conceptually. Empirically both work equally well (?), but two vowels is more economic, because it does not need stipulative specification and reduces the number of contrasts/segments

The two-vowel account

Two underlying vowels: /i/ and /i/, one is [-back], the other [\(\psi\)back] or [+back]

•

Rule	$/{\rm gotov\text{-}it^j}/$	/gotov-ij/
Surface palatalization	$/\mathrm{gotov}^{\mathbf{j}}\text{-}\mathrm{it}^{\mathbf{j}}/$	
Output	[ge'tov ^j it ^j]	[ge'tovij]
	'prepare'	'ready'

The two-vowel account

 In the case of velars, there is a counterfeeding order between velar palatalization and /i/-fronting

Rule	/nos-i/	/los ^j -i/	/muk-i/	/muk-it ^j /
Velar pal. Fronting /ɨ/-fronting		/los ^j -i/	/muk-i/	$/\mathrm{mut}\widehat{\mathfrak{f}}^{\mathrm{j}}\mathrm{it}^{\mathrm{j}}/$
Surface pal.			/muk ^j -i/	
Output	[nɐˈsɨ] 'noses'	[ˈlos ^j ɪ] 'moose (pl.)'	[ˈmuk ^j ɪ] 'torments'	[ˈmut͡ʃ ^j it ^j] 'to torment'
	110868	moose (pr.)	torments	to torment

The two-vowel account

- The two-vowel account needs three types of consonant-vowel interaction:
 - [-back] spreads $R \rightarrow L$: surface palatalization
 - [-back] spreads $L \to R$: complementary distribution of [i] and [i]
 - [+back] spreads $L \rightarrow R$: retraction
- Of course this will only work with a complicated computation: rule ordering (Halle & Matushansky, 2002), Lexical Phonology (Plapp, 1999), multi-level OT of one type (Rubach, 2000) or another (Blumenfeld, 2003)
- But how warranted is this complicated system?
- I take issue with three assumptions here:
 - That it is meaningful to talk of the segment [i]
 - \bullet That $[k^j\ g^j\ x^j]$ can only be derived before /i/
 - \bullet That $[i]/[\frac{i}{2}]$ is a unique pair in Modern Russian

The phonetics of [i]

- It has been known to Russian phoneticians since at least Tomson (1905) that there is no [i], which is in fact a diphthong, something like [ui]
- Since at least Padgett (2001) this has (should have) been known to Western scholars too
- Phonetic data provide evidence that the distinction between [i] and [i] is phonetic and purely contingent on the (lack of) palatalization of the preceding consonant (via enhancement?)
- Though this is not the interpretation provided by Padgett (2001)
- \bullet So if "[i]" is not a phonetic segment, what is it phonologically?
- Leaving the velars aside momentarily, it just seems that there is a difference between [i] which causes surface palatalization and [i] which does not

Russian palatalization: the true(r) story

- It is claimed that palatalized velars before non-front vowels are "marginal" to Russian phonology and in general palatalization in velars is non-distinctive
- Borrowings like g'ujs 'naval jack' and K'ol'n 'Cologne' are well nativized
- Contrast with the absence of [kɨ gɨ xɨ] which is a genuine gap: the two or three words that do exist usually have [k^ji g^ji x^ji] variants as with kyrgyz/kirgiz

- Integration of surface palatalization of velars into the morphology
- There is the 'weave' verb: only one in MSR, as a result of dialect mixing; Southern Russian dialects have a lot more verbs of this sort
- Then there is a diminutive suffix which causes velar palatalization in the native lexicon but can cause surface palatalization in novel words:
 - (20) a. ['volk] 'wolf'
 b. [vel'tf'onek] 'wolf cub'
 - (21) a. [me'kake] 'macaque' b. $[məke'k^jonək]$ 'small macaque' $([məke't]^jonək]$ possible but rare)

 Then there is the gerundive suffix /-a/ which causes velar palatalization in the standard but surface palatalization colloquially

• Is there a reasonable way to do this if $[k^j \ g^j \ x^j]$ can only appear before /i/?

- More general point: can morphophonology recycle a representation that is not phonological?
- Made separately by Flier (1982) and Kasatkin (1999)
- Kasatkin (1999): verbal paradigms of the ['tk^jot] type appear (though not exclusively) in those dialects where $/k^j$ g^j x^j / arise independently due to progressive palatalization assimilation

- Also: gerunds of the $[z_i^w g^j a]$ type are a characteristic feature of North-West Old Russian (Zaliznyak, 2004), where $/k^j g^j x^j /$ were always present
- Mophophonology makes free use of palatalized velars, so maybe we can get them from sources other than "/i/"

 An overlooked aspect of the palatalization of velars concerns unstressed /-e/ suffixes which are realized as [-I] but do not cause velar palatalization

(24) a.
$$[ru'k^{j}e]$$
 'hand (dat. sg.)'
b. $['muk^{j}i]$ 'torment (dat. sg.)'

- Similar facts for imperative /-i/
- One solution is Lexical Phonology via exclusion of velar palatalization from the word level (Plapp, 1996; Blumenfeld, 2003)
- At best, even if palatalized velars are always derived, their distribution is not a compelling argument for /i/
- Palatalized velars are contrastive segments on a par with other palatalized consonants
 - Same conclusion by Padgett (2003) though from different premises

- The /i i/ theory predicts the following categories:
 - /ki ti/ \rightarrow /t̄ʃ^ji t^ji/
 - $/ki ti/ \rightarrow /k^{j}i ti/$
 - Additional assumptions: $/ki \ ti/ \rightarrow /k^j i \ t^j i/$
- Here's an example:
 - (25) a. [keˈrove] 'cow' b. [kəreˈvʲonke] 'small cow'
 - (26) a. [se'bake] 'dog' b. [səbe'tʃjonke] 'small dog'
- In terms of palatalization, this looks quite like /i/
- Is there an $/\emptyset/$ in Russian?

Now consider these examples:

```
(27) a. [dube] 'oak (gen. sg.)'
b. [du'bok] 'small oak'

(28) a. [kr<sup>j</sup>v'ka] 'hook (gen. sg.)'
b. [kr<sup>j</sup>v'tf<sup>j</sup>ok] 'small hook'
```

- Quite apart from the fact that /o/ triggers velar palatalization...
- ... the system is set up in such a way that if a segment triggers velar palatalization, this implies that it triggers surface palatalization of non-velars

CASTL

	Velars and $[\widehat{\mathrm{ts}}]$			
Other consonants	None	Surface	Velar	
None	\checkmark		✓	
Surface	\checkmark	\checkmark	\checkmark	
Transitive			✓	

- \checkmark = existence of a suffix which imposes the relevant alternations
- Shaded cells indicate possible types of suffixes under a charitable interpretation of the theory where palatalization is due to [-back] spreading from the vowel itself
- The theory undergenerates

	Suffix-initial vowel				
Palatalization effect	/i/	/e/	/a/	/o/	/u/
None			√	√	√
VP only				\checkmark	
Surface velars only	\checkmark			\checkmark	
Surface all consonants	\checkmark	\checkmark	(\checkmark)		
Surface non-velars & VP	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
VP & TP	\checkmark	\checkmark	\checkmark	✓	\checkmark

- Some generalizations can be made on the relation of vowel quality and palatalization
- But certainly not the neat one
- Highlighted row: all vowels can be /i/!

Conclusion (kind of)

- A theory where the palatalization effects of vowels derive from their featural content is inadequate for two reasons:
 - In its simplest form, it fails to derive all the facts even for the front vowels and needs a lot of computation-related tweaking (e. g. multiple levels), and it is not obvious it can be done even then
 - Even so, the ability of [+back] vowels to trigger palatalization is quite unexpected
- Do we have a front/back pairing for all vowels in Russian, plus the extra computation?
- This has actually been tried! See DeArmond (1979); Kharytonava (2009)
- But is there a better way?

Outline

- Data
 - Inventories
 - Distributions
 - Palatalization and depalatalization
- Approaches and problems
 - Generative approaches
 - Challenging the assumptions
- The proposal
 - Assumptions
 - Analysis
 - Further issues

Russian palatalization: the true(r) story

Argument

- Squarely a "consonant power" (Hamilton, 1976) approach
- Palatalization on consonants is independent of the quality of the following vowel
- Front vowels (or indeed any vowels) do not spread their features onto consonants (with one exception)
- Morpheme-edge palatalization is due to a floating feature
 - Cf. Bidwell (1962) for Russian and Gussmann (1992) for Polish
- Surface palatalization is the addition of a V-place[coronal] feature
- Velar/transitive palatalization is displacement of underlying place with the V-place[coronal] feature
- The choice of palatalization is regulated by the ranking

Place specifications

- Using the Parallel Structures Model of feature geometry (Morén, 2003)
- Partial specification, ignoring manner and laryngeal features

		C-place	;	V-place
Consonants	[lab]	[cor]	[dor]	[cor]
	√			
$/\mathrm{p}^{\mathrm{j}}/$	\checkmark			\checkmark
/t/		\checkmark		
$/\mathrm{t^{j}}/$		\checkmark		\checkmark
/k/			\checkmark	
$/k^{j}/$			\checkmark	\checkmark
/t͡ʃj/				\checkmark
$/\hat{\mathrm{ts}}/$				

Constraints

- Max[F]: "keep tokens of features present in the underlying representations"
- Deplink[F]: "do not attach features to segments to which they are not attached underlyingly"
- *[F]: "do not have feature [F] on the surface"
- *Deplink[F₁]&*[F₂]: "do not attach [F₁] to a segment containing [F₂]"
- (Alternatively, use a more elaborate schema for DepLink à la Morén, 2001, i. e. DepLink[F₂]([F₁]))
- Spread: whatever constraint favours the spreading of underlying V-place[coronal], e. g. domain binarity
- Morphological indexation: if a constraint is indexed for a set of morphemes, it is vacuously satisfied by morphemes with a different index (Pater, 2009)

Easy case: no floating features

• Note: we are using /i/ as the vowel for expositionary purposes. we assume that it consists just of the feature V-place[coronal]

ti	DepLink(V-pl[cor])&*C-pl[cor]	Max(V-pl[cor])	SPREAD
a. 🍲 tɨ			*
b. t ^j i	*!		

t ^j i	DepLink(V-pl[cor])&*C-pl[cor]	Max(V-pl[cor])	SPREAD
a. ti		*!	*
b. ☞ t ^j i			

No [kɨ gɨ xɨ]

 We propose that the lack of word-internal [ki gi xi] is phonological and arises from Spread dominating Deplink(V-pl[cor])&*C-pl[dor]

ki	SPREAD DEPLINK(V-pl[cor])&*C-pl[d	
a. 🍲 k ^j i		*
b. ki	*!	

- But spreading is blocked by the left boundary of the stem/word
- This gives "retraction" for free: it is just lack of spreading, with the non-palatalized consonants being velarized and giving the impression

Surface palatalization

- Surface palatalization is the addition of floating V-pl[cor]
- To save space, Deplink is forthwith understood as conjoined with the relevant markedness constraint

	t ^j i	Max(V-pl[cor])	Max(C-pl[cor])	DepLink(V-pl[cor])
a.	ti	*!	 	
b. 🗇	t ^j i		 	*
c.	$\widehat{t}\widehat{J}^{j}i$		*!	

• This works identically for dorsals and non-dorsals

Velar palatalization

- For velar palatalization, DEPLINK is ranked higher than MAX(C-place) but MAX(V-pl[cor]) is still unviolated, so the C-place feature is deleted to ensure satisfaction of the conjoined constraint
- Normally this would be a ranking conflict, but that's why we need morphological indexation

	t $^{j}i_{\alpha}$	Max(V-pl[cor])	DepLink(V-pl[cor])&*C-pl[cor] $_{\alpha}$	Max(C-pl[cor])
a.	ti_lpha	*!		
b.	$t^j i_\alpha$		*!	
c. <	$\widehat{\mathrm{tf}}^{\mathrm{j}}\mathrm{i}_{lpha}$			*

Labial epenthesis

- Labials are not deleted in transitive palatalization contexts, but instead a [l^j] is epenthesized
- This means tha Max(C-pl[lab]), Max(V-pl[cor]) and DepLink are all unviolated, but Dep ("do not epenthesize") is
- Morén (2006) proposes for Serbian that $[\Lambda]$ is epenthesized to comply with sonority sequencing

	p ^j i	Max(C-pl[lab]) Max(V-pl[cor])	DEPLINK	"SonSeq"	DEP
a.	$p^{j}i$		*!	 	
b.	$p\widehat{tJ}^{j}i$		 	*!	*
c. 🕾	₹ pl ^j i		 	 	*

- SonSeq is a cover constraint here
- TETU: best possible epenthetic segment given the conditions

Overgeneration is good!

- Quite obviously, this system is very powerful:
 - A suffix starting with any vowel can cause any palatalization for any consonant
 - A single suffix can cause different palatalization effects for different consonants
- But this is good
- Because that's how modern Russian works

Implications

- Various palatalization phenomena in Russian are amenable to a fully parallel account
- Caveat:
 - The blocking of V-place[cor] spreading across left edges might be a cyclic effect
- The morphological generalizations of Blumenfeld (2003) (VP only at stem level) can be restated in terms of indices
- No stance on whether serialist OT is necessary in general, e.g. for architectural reasons
- But Russian does not provide compelling evidence for it

More implications

- Note that [sw] and [zw], which are not palatalized on the surface, bear a V-place[coronal] feature
- For authors such as Rubach (2000); Mołczanow (2007) this is a further argument for serialism
- But this is because for them the distinction between [i] and [i] is phonological
- In fact, we have seen this is phonetics
- The relevant segments also behave like they are palatalized in vowel reduction
- So there is no stipulative serialism, just the modular phonology-phonetics interface

Conclusions and outlook

- Palatalized velars are normal segments
- There is very little consonant-vowel interaction in the "normal" sense
- Palatalizations are caused by a floating feature and parallel computation
- More powerful theory of palatalization, but also empirically better

Further outlook

- ullet Solve residual issues (especially the $[\widehat{ts}]$ -velars parallelism)
- Work up full feature specification
- Dovetail with account of reduction (ask) and assimilation

